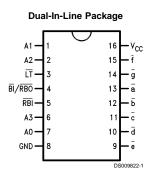
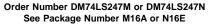
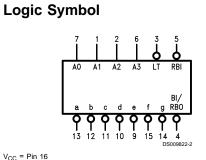
March 1998


FAIRCHILD


DM74LS247 BCD to 7-Segment Decoder/Driver with Open-Collector **Outputs**

General Description


The 'LS247 has active LOW open-collector outputs guaranteed to sink 24 mA. It has the same electrial characteristics and pin connections as the 'LS47. The only difference is that the 'I S247 will light the top har (see a) for nu

Connection Diagram

the L3247 will light the top bar (segment a) for numeral o
and the bottom bar (segment d) for number 9. For detailed
description and specifications please refer to the 'LS47 data
sheet.

V_{CC} = Pin 16 GND = Pin 8

Pin Names	Description
A0-A3	BCD Inputs
RBI	Ripple Blanking Input (Active LOW)
LT	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
a_g	Segment Outputs (Active LOW)

© 1998 Fairchild Semiconductor Corporation DS009822

www.fairchildsemi.com

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage

Operating Free Air

Temperature Range

Storage Temperature Range

0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{он}	High Level Output Current BI/RBO			-50	μA
I _{OL}	Low Level Output Current			24	mA
TA	Free Air Operating Temperature	0		70	°C

7V

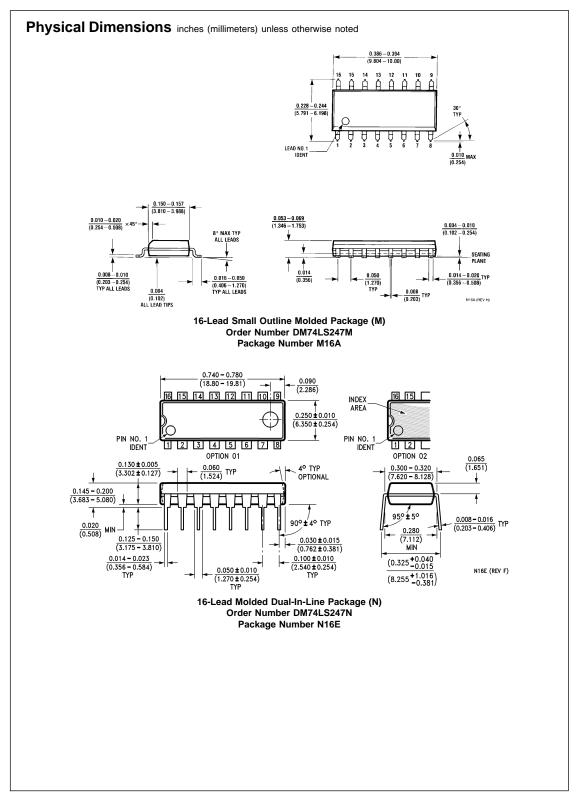
7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditio	ons		Min	Тур	Max	Units
							(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = - 18 mA					-1.5	V	
V _{OH}	High Level Output Voltage	V _{CC} = Min, I _{OH} = Max, V _{IL} = Max			2.4	3.4		V	
I _{OFF}	Output High Current	$V_{\rm CC} = 5.5 V, V_{\rm O} = 15 V$					250	μA	
	Segment Outputs								
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = Max, V _{IH} = Min				0.35	0.5	V
			I _{OL} = 3.2 mA	١	BI/RBO			0.5	
			I _{OL} = 12 mA		ā –g		0.25	0.4	
			I _{OL} = 1.6 mA	١	BI/RBO			0.4	
Ц	Input Current @ Max	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 7V					0.1	mA	
	Input Voltage								
IIH	High Level Input Current	V _{CC} = Max	$V_{CC} = Max, V_1 = 2.7V$					20	μA
IIL	Low Level Input Current	V _{CC} = Max, V _I = 0.4V Other Inputs				-0.4	mA		
		V _{CC} = Max	, V _I = 0.4V	BI/RBO Inp	out			-1.2	mA
I _{os}	Short Circuit Output Current	V _{CC} = Max	(Note 3)	•		-0.3		-2.0	mA
I _{cc}	Supply Current	V _{CC} = Max						13	mA


Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

 $V_{CC} = +5V, T_A = +25^{\circ}C$

		RL		
Symbol	Parameter	CL	Units	
		Min	Max]
t _{PLH}	Propagation Delay Time		100	ns
	Low to High Level Output			
t _{PHL}	Propagation Delay Time		100	ns
	High to Low Level Output			

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconducto	
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.	
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175	
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179	
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon		
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong		
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200		
ww.fairchildsemi.com		Fax: +852 2314-0061		

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.